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Abstract

In this paper, optimal distribution of a viscoelastic damping layer is sought for suppression of the
transient vibration of a flexible beam. For the damping design, eigenvalues in the range of interest are taken
as design criteria rather than the responses at a specific frequency. Two eigensensitivity based optimizing
procedures are proposed, which are analogous to the pole placement technique and optimal control theory
for dynamic system design. For the eigenanalysis of the structure with frequency-dependent material,
Golla–Hughes–McTavish (GHM) model is used in expressing the viscoelastic material property and an
approximate eigensolution is employed to avoid the intensity of iterative computation in the optimization
process which is caused by additional degrees of freedom due to GHM modelling. Optimized partial
coverage configurations are illustrated and compared to the full coverage configuration demonstrating the
improved vibration characteristic of the optimally layered structure.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

When exposed to vibrations, the high polymeric molecular properties exhibited by the
viscoelastic materials enhance the system damping, thereby realizing considerable dissipation of
vibration energy. There are two ways of layer damping treatment using these materials:
unconstrained and constrained configuration, where the vibratory energy is dissipated due to
direct strains in the former case and predominantly shear strains in the latter [1]. The costs of
materials and application processes are often lowest for the unconstrained treatment though it is
somewhat inefficient from a weight point of view compared with the constrained treatment,
noting the efficiency of the constrained treatment is achieved at some cost with respect to the
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difficulty of application and greater analytic difficulty. Viscoelastic damping layers for noise and
vibration control of flexible structures are widely used in various engineering fields, and passive
control like this has still an attractive alternative in terms of economy, simplicity and stability
compared to the more modern vibration control measures such as active and semi-active control.
Modelling and analyzing of viscoelastic structures are difficult and cumbersome for their

frequency- or time-dependent material property. Then, many researchers have focused mainly on
frequency-domain design for maximum performance, say, adjusting frequency response character-
istics: maximizing modal loss factors [2]; minimizing fixed-frequency forced responses [3]; minimizing
resonance responses [4]. On the other hand, when it comes to suppressing the transient vibration due
to disturbances like impulse, eigenvalues are more familiar and consistent design criteria for
characterizing the dynamic performance in damping design, as such in the pole placement technique.
As the frequency-dependent properties of viscoelastic materials lead to an non-linear eigenvalue
problem, however, the eigenanalysis of viscoelastic systems becomes unconventional one. It can be
done in two ways, iteratively or directly using available eigenanalysis algorithm by introducing
additional degrees of freedom. The latter has been made possible by virtue of recent development of
the models for the viscoelastic behavior such as Golla–Hughes–McTavish (GHM) model [5]. At the
cost of drastic increase in the problem size, which is caused by introducing additional dissipative co-
ordinates beside the original co-ordinates, GHMmodel yields to a second order differential equation
with constant coefficient matrices that is familiar with structural dynamicists. Hence, it enables one
to obtain not only eigensolutions from the typical form of the eigenvalue problems but also dynamic
responses such as transient or frequency response easily using available algorithms.
In this paper, optimal thickness distribution of an unconstrained viscoelastic damping layer is

sought for the transient vibration suppression by controlling some dominant eigenmodes. Due to
the nature of their action, the performance of damping layers strongly depends on their placement
with respect to structural vibration mode shapes. For example, an unconstrained layer produces
the highest damping if placed at structural antinodes. In many practical applications, such as
aeronautic and space structures, damping treatment is subject to a very careful consideration of
weight economy. Since the partial coverage technique has the advantage of adding less weight,
efforts should be, therefore, made to find its optimal use. To this end, eigensensitivity based
optimization procedure is proposed, which is analogous to that of pole placement technique and
optimal control. In the first place, minimum mass configuration of the damping material is sought
which satisfies constraints on the eigenvalues of some dominant modes for the dynamic
requirements. Alternatively, the modified version of the performance index used in the optimal
control theory is taken as the objective function, for there are no control forces, under constraints
on the amount of the damping material. The damping treatment is allowed on both top and bottom
of the structure and the results are compared with those for the one-sided full coverage case.

2. Finite element formulation

2.1. Governing equation

In Fig. 1, the geometric configuration of a cantilever beam, treated with unconstrained
viscoelastic material, is illustrated, where only the base beam is clamped. There are two components:
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the base beam and the viscoelastic layer—quantities associated with each of these components are
denoted with superscript or subscript b and l; respectively, throughout this paper. As shown in
Fig. 2, the motion of points in the system is described using the lateral deflection w; the longitudinal
displacement at the neutral axis of the base beam u0; and the shear angle in the viscoelastic layer cy;
where the shear strain in the damping layer is considered for the cases that the layer is thick enough
to cause considerable shear deformation, which may occur in partial coverage configurations.
The base beam is elastic and transverse shear strain is neglected. The lateral displacement of the

middle of the base beam is shared by all points in the cross-section. The viscoelastic layer is lossy
and the shear angle associated with non-negligible transverse shear is considered. The longitudinal
normal strain in the viscoelastic layer is also included. Under these assumptions, the displacement
fields are given by

ubðx; zÞ ¼ u0ðxÞ � z
@wðxÞ
@x

;

ulðx; zÞ ¼ u0ðxÞ � z
@wðxÞ
@x

� z � 1
2

hb

� �
cyðxÞ; ð1Þ

where the subscript 0 denotes the centerline of the base beam.
Now that the displacement of any point in the beam and the viscoelastic layer have been

defined, the longitudinal normal and transverse shear strains may be determined as

eb
xxðx; zÞ ¼

@u0ðxÞ
@x

� z
@2wðxÞ
@x2

;

el
xxðx; zÞ ¼

@u0ðxÞ
@x

� z
@2wðxÞ
@x2

� z � 1
2

hb

� �@cyðxÞ

@x
;

gl
xzðx; zÞ ¼ �cyðxÞ: ð2Þ
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Fig. 1. Schematic diagram of a cantilever beam treated with a damping layer.
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Fig. 2. Displacement fields.
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In addition to the elastic constitutive equation of the base beam, linear viscoelastic constitutive
equation of the layer is expressed in the convolution or hereditary integral form

sl
xzðtÞ ¼

Z t

0

gðt � tÞ
@gl

xzðtÞ
@t

dt; ð3Þ

where g is the relaxation function. Through the Laplace transformation, the equation given above
is transformed to

*sl
xzðsÞ ¼ s *gðsÞ*gl

xzðsÞ ¼ GðsÞ*gl
xzðsÞ; ð4Þ

where GðsÞ means complex modulus in case of s ¼ jo:
From the extended Hamilton’s principle, one obtains the following equation composed of

variation of the kinetic energy dT ; the virtual internal energy dU and the virtual work dW done
by external forces acted on the system,

dT � dU ¼ dW : ð5Þ

Each term in the left-hand side of the equation above is expressed as

dT ¼ dTb þ dTl

¼ b

Z l

0

Z 1
2

hb

�1
2

hb

rbð ’ubd ’ub þ ’wd ’wÞ dz þ
Z 1

2
hbþhl ðxÞ

1
2

hb

rlð ’uld ’ul þ ’wd ’wÞ dz

( )
dx

dU ¼ dUb þ dUl

¼ b

Z l

0

Z 1
2

hb

�1
2

hb

sb
xxde

b
xx dz þ

Z 1
2

hbþhl ðxÞ

1
2

hb

ðsl
xxde

l
xx þ sl

xzdg
l
xzÞ dz

( )
dx; ð6Þ

where r denotes material density.

2.2. Discretized equation

Discretized governing equation is obtained by substituting Eqs. (1)–(3) into Eq. (5) and
interpolating u0; w; c by appropriate interpolation functions. In this paper, w is interpolated using
Hermitian elements which allow element-to-element continuity of deflection and slope. Also, u0 is
interpolated using a quadratic polynomial and c is interpolated consistent with u0 and @w=@x:
Because slope and longitudinal displacement have the same interpolation order, the element will
not shear lock [6].
Denoting mass matrix, stiffness matrix of the base beam, stiffness coefficient matrix of the

layer, general displacement vector and external force vector as M; Kb; Kl ; x and f; respectively,
discretized equations are written as

M .xðtÞ þ KbxðtÞ þ
Z t

0

gðt � tÞKl ’xðtÞ dt ¼ fðtÞ: ð7Þ
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From this equation, if the initial conditions are assumed to be zeros for convenience, one obtains
the form in the Laplace domain

ðs2Mþ Kb þ GðsÞKlÞ *xðsÞ ¼ *fðsÞ: ð8Þ

3. Viscoelastic analysis

The frequency- or time-dependent behavior of the viscoelastic material can be captured by GðsÞ
in Eq. (8), which is obtained by curve fitting of the measured data. While GðsÞ is linearly
dependent on s in viscously damped system, it is a non-linear function of s and makes the
eigenvalue problem non-linear in general viscoelastic systems. To describe the behavior of GðsÞ;
various models have been developed based on spring-dashpot model [7], fractional calculus [8],
Prony series [9], etc. Among others GHM model is used in this paper, for it renders the non-linear
eigenvalue problem formulated to corresponding linear one and accounts for transient response.

3.1. GHM model

In this approach, the material modulus function is represented as a series of ‘mini-oscillator’
terms. Denoting that the factor GN is the value of the relaxation function gðtÞ at t ¼ N; GðsÞ is
expressed in the form

GðsÞ ¼ GN 1þ
X

k

ak

s2 þ 2#zk #oks

s2 þ 2#zk #oks þ #o2k

 !
; ð9Þ

where ak; #zk and #ok are constants determined by curve fitting of the measured data.
The second order matrix equations of motion, which are most familiar form to structural

dynamicists, are yielded by introducing auxiliary co-ordinates, called dissipation co-ordinates, of
the form

*qkðsÞ ¼
#o2k

s2 þ 2 #zk #oks þ #o2k
*xðsÞ: ð10Þ

By substituting Eqs. (9) and (10) into Eq. (8) and inverse transformation, one obtains the
following second order form equation with constant coefficient matrices:

Ma .xaðtÞ þ Ca ’xaðtÞ þ KaxaðtÞ ¼ faðtÞ; ð11Þ

where each vector and matrix are expressed in case of k ¼ 2 as

xaðtÞ ¼

xðtÞ

q1ðtÞ

q2ðtÞ

2
64

3
75; Ma ¼

M 0 0

0 GNa1
1

#o21
Kl 0

0 0 GNa2
1

#o22
Kl

2
666664

3
777775;
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Ca ¼

0 0 0

0 GNa1
2#z1
#o21

Kl 0

0 0 GNa2
2#z2
#o22

Kl

2
6666664

3
7777775
;

Ka ¼

Kb þ GNð1þ a1ÞKl �GNa1Kl �GNa2Kl

�GNa1Kl GNa1Kl 0

�GNa2Kl 0 GNa2Kl

2
64

3
75; faðtÞ ¼

fðtÞ

0

0

2
64

3
75

and more detailed derivations of this equation are found in Ref. [5]. It is to be noted that the size
of matrix comes to be k þ 1 times as large as the original size. Namely, if the damping is modelled
using the GHM model, the degree of freedom (d.o.f) is at least doubled.

3.2. Eigenvalue problem

The eigenvalue problem of Eq. (11) is to be dealt in the state space because the damping matrix
Ca is non-proportional. Then, one can obtain straightforward the form with respect to ith mode

Azi ¼ liBzi; ð12Þ

where li is the ith eigenvalue and A; B; zi are defined by

A ¼
�Ka 0

0 Ma

" #
; B ¼

Ca Ma

Ma 0

" #
; zi ¼

qi

lqi

" #
:

The biggest drawback with this approach is the size of the matrix, and hence the computational
effort required for the eigensolution. If d.o.f. of Eq. (7) is n; the number of the eigenvalues is
2nðk þ 1Þ; which consists of, in lightly damped viscoelastic systems, 2n underdamped modes and
2nk overdamped modes [9,10]. To avoid the intensity of the computation in solving the eigenvalue
problem of Eq. (12), an approximate method is employed which uses elastic modes, and applies
under light damping assumption [11]. The corresponding elastic eigenmode is obtained by taking
only constant part of GðsÞ in dealing with Eq. (8). Namely, denoting that %li and %xi is the ith
elastic eigensolution pair, it satisfies the following equations normalized with respect to the mass
matrix M:

f%l2i Mþ Kb þ GcKlg %xi ¼ 0; ð13Þ

%x
T
i M %xi ¼ 1; ð14Þ

where

Gc ¼ GN 1þ
X

k

ak

 !
:
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Now, consider a solution of the form

xi ¼
Xn

p¼1

apxp; ð15Þ

where ai ¼ 1; japj51 ðpaiÞ for small damping.
Then, using orthogonality of the undamped modes, one obtains the following by substituting

Eq. (15) into the eigenvalue problem of Eq. (8) and multiplying on the left by transpose of %xi:

l2i þ
X

p

Gip
s ðliÞap � %l2i ¼ 0; ð16Þ

where, denoting the s-dependent part of GðsÞ as GsðsÞ;

Gip
s ðliÞ ¼ GsðliÞ %xTi Kl %xp:

By neglecting small terms according to the assumption on the magnitude of ap; Eq. (16) yields to

l2i þ Gii
s ðliÞ � %l2i E0; ð17Þ

where the repeated index does not mean summation on i:
For the function GsðsÞ varies slowly with frequency for the material with normal damping

mechanism, it is sufficient to evaluate the function at the undamped eigenvalue %li: Considering
that small damping also indicates small magnitude of the function GsðsÞ; the ith underdamped
mode is approximated based on Eq. (17) by

liE7%li �
1

2%li

Gii
s ð%liÞ: ð18Þ

Also, the corresponding mode vector is written as

xiE %xi þ
X
pai

Gpi
s ð%liÞ

ð%l2i � %l2pÞ
%xp; ð19Þ

where the coefficients ap (paiÞ are derived by substituting Eq. (15) into the eigenvalue problem of
Eq. (8) and multiplying on the left by transpose of %xp instead of %xi to be

apE
Gpi

s ð%liÞ
ð%l2i � %l2pÞ

:

While the material modulus may be obtained from the measured modulus by using any suitable
fitting function without producing GHM model of the material, the GHM expression is used to
enable the comparison of the methods.

4. Optimization procedure

In this section, optimization is carried out in the aspect of improving the transient vibration
characteristics of a flexible beam. Based on the method outlined above, eigenvalues of the system
are taken as main design criteria for this passive damping design, for which many researches have
been performed concerning about mainly the response at a specific frequency. For consistency, it
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is attempted to hire optimization framework used for general dynamic system design
methodologies such as the pole placement technique and optimal control theory [12].

4.1. Design parameter

The damping layer is treated on one side or both sides of the base beam and the thickness
distribution of the layer is described by the linear interpolation between nodal points of the layer
with upper and lower limits (see Fig. 3) [13]. The height at each nodal point, independent of the
nodes for beam elements, is a design variable. In order to allow for steep slopes, design variables
may become negative. For the numerical stability, eliminating elements is avoided by introducing
a lower limit on the layer thickness. An upper limit is also imposed so that the analysis makes
sense under prescribed fundamental assumptions in Section 2.1. It is to be noted that high enough
order integration is required to capture the thickness variation in the beam element correctly
where the integration is evaluated.

4.2. Objective function and constraint

Some of the lowest underdamped modes, rather than the overdamped ones, are taken into
account since the former is more dominant than the latter in characterizing the vibration
properties of the system. The optimization problem is presented in two ways described below.
First, the minimum mass configuration of the thickness distribution is sought with constraints on
real and imaginary parts of the considered eigenmodes, which is analogous to the pole placement
technique. This statement is expressed in the mathematical form

minimize rlb
R l

0 hlðxÞdx

subject to f i
RfRðliÞgp0;

f i
I fIðliÞgp0 ði ¼ 1;y;mÞ;

ð20Þ

where f i
R and f i

I are constraint functions for real and imaginary parts of the ith eigenvalue
respectively, and m is the number of modes to be included in the analysis. However, convergence
of this optimization process is not always guaranteed, for the sensitivity of each mode with respect
to the design parameter is not independent, and even real and imaginary values of a mode neither.
In other words, because the variance of mass, stiffness and damping property of the system are
related one another by the material property of the added damping layer, sensitivities of the
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Fig. 3. Design parameters for thickness distribution of the damping layer.
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constraint functions are coupled one another and the optimal location for one mode affects the
case of the other modes. In addition, the limited amount of the damping material provides
another design constraint. Therefore, one must be careful in setting boundary values on the
constraints.
Alternatively, a performance index is defined as the objective function that is analogous to the

one used in the optimal control theory. Consisting of the weighted sum of the modal potential and
kinetic energy accumulated till the vibration of the system dies out, it brings state variables to the
equilibrium state as fast as possible in terms of energy minimization. Since there are no control
forces, the optimal thickness distribution is sought under a constraint on the mass of the damping
layer. Then, in the mathematical form, the second optimization problem is written as

minimize P ¼
R
N

0

Pm
i¼1

fciZ2i ðtÞ þ di ’Z2i ðtÞg dt

subject to bl
R 1
2

hbþhl ðxÞ

1
2

hb
rl dx � #mp0;

ð21Þ

where ZiðtÞ is the ith mode response and ci and di are weighting factors and #m is a given amount of
the damping material.
If each modal response is considered as the solution of one degree of freedom spring-dashpot

underdamped vibration, the ith modal response can be written in terms of ith natural frequency oi

and damping ratio zi as

ZiðtÞ ¼ Aie
�zioi sinðoi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2i

q
þ yiÞ; ð22Þ

where

Ai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f’Zið0Þ þ ziZið0Þg

2 þ Z2i ð0Þo
2
i ð1� z2i Þ

q
o2i ð1� z2i Þ

; yi ¼ arctan
Zið0Þoi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2i

q
’Zið0Þ þ zioiZið0Þ

:

Substituting Eq. (22) into the index P and evaluating the integration, the performance index is
written as

P ¼
Xm

i¼1

Z2i ð0Þ ci
1

4zio3i

’Zið0Þ
Zið0Þ

þ 2zioi

� �2
þ
1

4zioi

( )
þ di

1

4zioi

’Zið0Þ
Zið0Þ

� �2
þ
oi

4zi

( )" #
: ð23Þ

As one can see, the index is dependent on the initial conditions, and thus the optimal thickness
distribution comes to be subject to them. To obtain the consistent form, independent of initial
conditions, the minimum values of each braced term are taken as the objective parameters to be
minimized instead. Then, the modified version of Eq. (21) is written as

minimize %P ¼
Pm
i¼1

%ci
1

zioi

þ %di
oi

zi

� �

subject to rlb
R l

0 hlðxÞ dx � #mp0;
ð24Þ
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where %ci and %di are weighting factors. Furthermore, it is possible to write Eq. (24) in terms of real
and imaginary parts of the ith eigenvalue using following equations:

RðliÞ ¼ �zioi; IðliÞ ¼ oi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2i

q
: ð25Þ

4.3. Eigenvalue sensitivity

From Eq. (12) eigenvalue sensitivity is calculated by differentiating both sides with respect to a
design parameter p and using symmetric property of A and B as [14]

@li

@p
¼

zTi ð@A=@p � li@B=@pÞzi

zTi Bzi

ð26Þ

If eigensolutions happen to be obtained through certain methods such as the approximate
solution discussed in Section 3.2, the sensitivity can be given from Eq. (8) directly without
formulation in the state-space following the analysis mentioned in deriving Eq. (26) closely:

@li

@p
¼ �

xTi fl
2
i @M=@p þ GðliÞ@Kl=@pgxi

xTi f2liMþ ð@GðliÞ=@liÞKlgxi

: ð27Þ

5. Results and discussion

Table 1 shows the material property and geometric dimension used in the numerical analysis.
Viscoelastic material property is expressed by the GHM model with two second order terms
(k ¼ 2) [15]. Cares must be taken for the analysis to be within the frequency range of the GHM
model. For the non-linear constrained minimization problems of Eqs. (20) and (24), ‘constr’
command in MATLAB is used, which applies the sequential quadratic programming with the
quasi-Newton gradient search method. Each beam node has four d.o.f.—axial displacement u0;
transverse displacement w; rotation angle @w=@x of the base beam and shear angle of the layer cy:
And two internal nodes, related to the axial displacement and shear angle, are embedded in each
beam element. If two second order terms are required to successfully fit the viscoelastic material
properties, then the number of d.o.f. is three times as many as that of physical d.o.f., even up to six
times in case of state-space transformation, and results in drastic increase in the computational
efforts for the eigensolution. Therefore, the approximate eigensolution is adopted for the iteration
process to lighten the computational efforts and the GHM based solution is applied in the final
converged configuration only. To show the validity of the approximate solution for the damping
level that is to be tested, some comparison works are done between the solutions from Eqs. (12)
and (18). Table 2 shows natural frequencies and damping ratios of the three lowest modes
calculated through the former and the latter equation, respectively, where the beam has 10
elements and the damping layer is treated fully with the thickness of the base beam on both sides
of the beam. One can notice that the approximate solution of the second mode, which shows the
highest damping ratio among those three, does not follow the GHM solution well unlike those of
two other modes. That is due to the increased contribution of the other modes ðpaiÞ in the
approximate solution Eq. (15). Therefore, the numerical analysis detailed below is carried out
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within tolerance of discrepancy between the two solutions considering the damping level of the
tested models.
The damping material is allowed to be layered on both sides of the base beam. The number of

beam elements and design parameters used in the following examples are determined after
convergence study to be 10 and 17, respectively. For the numerical stability and feasibility of the
analysis, the lower limit and upper limit are set on the thickness of the layer, as 1	 10�7 and
thickness of the base beam, respectively. As a reference model, the single-sided fully covered case
is taken for the comparison, where the thickness of the layer is the same as that of the base beam.

5.1. Minimum mass

First, minimum mass configuration is sought satisfying required dynamic performance set by
constraints on dominant eigenvalues of the structure. The real and imaginary parts of the
considered modes are to be constrained, respectively, at the same time, for improving the property
of the one may mean degrading that of the other such as too much damping lowers resonance
frequency considerably. In this example, the upper boundary is imposed on the real part of the
chosen mode for damping property and the lower boundary on the imaginary, considering
positive one of a conjugate pair, for stiffness property. Then, constraints of Eq. (20) are
expressed as

RðliÞ � Rð#liÞp0;

� IðliÞ þ Ið#liÞp0 ði ¼ 1;y;mÞ; ð28Þ
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Table 2

Validity of the approximate solution compared to the GHM solution

Mode 1st 2nd 3rd

Natural frequency GHM 20.3 135.6 400.6

(rad/s) Approx. 20.5 136.1 399.9

Damping ratio GHM 0.0212 0.0716 0.0415

Approx. 0.0204 0.0624 0.0395

Table 1

Material and geometric data

Base beam (Al)

Length 1 m Width 0:01 m Thickness 0:005 m
Density 2700 kg=m3 Young’s modulus 70 GPa

Damping layer (DYAD-606 Soundcoat, 25
C)

Density 1105 kg=m3 The Poisson ratio 0.49 GN 1:18 MPa
#a1 87.5 #z1 1344.6 #o1 1494.5
#a2 263.1 #z2 129.6 #o2 39999.9

T.-W. Kim, J.-H. Kim / Journal of Sound and Vibration 273 (2004) 201–218 211



where #li is the specified ith eigenvalue. As the constraint functions, left-hand side of Eq. (28), are
non-linear functions of design parameters and coupled one another, the more modes are
considered in the analysis, the more difficult it becomes to find the feasible domain. Thus, it is of
great importance in point of convergence to take appropriate initial values of the design
parameters. The thickness distribution on one side (symmetric on the other side) is plotted in
Fig. 4 for the following three constraint cases:

Case 1: Double-sided, first mode constrained;
Case 2: Double-sided, first and second modes constrained;
Case 3: Double-sided, first through third modes constrained;

where the real and imaginary parts of corresponding eigenvalues of the reference model are
assigned to each boundary value of the constraints, and rm denotes mass ratio of present to
reference case. It shows rather discrete than uniform or smooth configurations, which confirms
the importance of appropriate placement of the damping layer. Fig. 5 shows the design domains
for each mode eigenvalue and the locations of the updated eigenvalues are marked for each case in
the upper half region of the complex plane. The considered eigenmodes in the optimization
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Fig. 4. Thickness distribution of the damping layer (symmetric on the other side): (a) case 1 ðrm ¼ 0:33Þ; (b) case 2
ðrm ¼ 0:72Þ; (c) case 3 ðrm ¼ 1:1Þ:
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process are placed in the target area as expected and one can notice that it may be achieved at the
expense of the performance of the other modes, or increasing the real parts of the other modes
compared to the reference. This situation is reflected in Fig. 6, which compares the frequency
response for each coverage configuration, where the beam is forced at the tip and the response is
measured at the same point. The response of each case is depicted using a solid line in (a), (b), (c),
respectively, and the responses of the untreated beam and the reference model are superimposed
using a dotted and dashed line for comparison. One finds the negative effect of the partial
coverage on the unconsidered modes by increasing the magnitude at the resonant frequency. For
the considered modes of each simulated case, the magnitudes at the resonant frequencies are
found to be lowered while the resonant frequencies being prevented from being dropped too much
compared to the reference, which means that the modification of damping and stiffness property
is considered simultaneously by manipulating eigenvalues in this approach. Thus, it is noticed that
the responses of the optimally layered beam in the lower frequency range due to increase of the
lowest resonance frequency.

5.2. Maximum performance

Using the performance index defined in Eq. (24), optimization is carried out for three lowest
underdamped modes with three different weighting cases ½%c1 %c2 %c3 %d1 %d2 %d3� according to the
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number of modes included in the optimization process:

Case 4: Double-sided, ½ob
1 0 0 1=o

b
1 0 0�:

Case 5: Double-sided, ½ob
1 ob

2 0 1=o
b
1 1=o

b
2 0 �:

Case 6: Double-sided, ½ob
1 ob

2 ob
3 1=o

b
1 1=o

b
2 1=o

b
3�;

where ob
i ði ¼ 1; 2; 3Þ is natural frequency of the untreated base beam and the mass of the layer is

constrained by that of the reference model. Optimized thickness distribution on one side
(symmetric on the other side) is plotted in Fig. 7 for each weighting case. The same amount of
damping material is distributed differently depending on the modes to be adjusted and shows that
there seems to be no intermediate values, which implies that the location of the damping layer is to
be closely investigated to control the property of certain modes effectively. All of three cases
converge fast and well unlike the previous approach, for it is easy to find the feasible domain due
to the simple constraint condition, mass of the damping layer. Fig. 8 shows the location of the
updated eigenvalues marked for each case in the upper half region of the complex plane.
Compared to the location of the eigenvalues of the reference model which has the same amount of
the damping material as the tested cases, one can notice that improved eigenproperty is obtained
for the considered modes—namely first mode of case 4, first and second modes of case 5, first
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Fig. 6. Frequency response at the tip: ?; untreated; ��; single-sided fully covered. (a) case 1, (b) case 2, (c) case 3.
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through third modes of case 6—in that they have higher natural frequency and damping
ratio than the reference. The enhanced dynamic property is shown in Fig. 9, where the
frequency responses are obtained under the same condition and plotted with the same
legends as those for Fig. 6. The magnitude at the resonant frequency is found to be
lowered and the resonant frequency to become higher than the reference values for the
considered modes of each case, which means that better stiffness and damping property
of the target mode are obtained by the optimization. The improved stiffness characteristic is
evident in case 4 in contrast to the single-sided fully covered beam by noticing that the response in
the lower frequency region is better than that of the untreated beam. In cases 5 and 6, each mode
is weighted in a way that it has the same order of importance in these examples, and so one can
obtain better results by putting more weights on the important modes. Considering that
improving the dynamic behavior of any mode may cause the degradation of the other modes,
there needs to be trade-offs among eigenproperty of the modes to be modified by co-ordinating
weighting values.
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6. Conclusion

This paper has considered optimal coverage of an unconstrained viscoelastic layer damping
treatment for the transient vibration suppression of a flexible beam. In the proposed framework,
two eigenvalue sensitivity based design procedures, which are analogies of the pole placement
technique and optimal control theory for dynamic system design, were introduced. They were
modified to be suitable for the passive damping design and numerical examples presented.
Through the proposed optimization process, the enhanced dynamic property of the chosen modes
was shown by frequency responses compared to that of the uniformly layered beam with the same
amount of the damping layer. It was also shown that the layer is distributed rather discretely than
smoothly gathering around certain positions depending on the considered modes. The proposed
approaches consider the variation of stiffness and damping property due to the added damping
material simultaneously, so that the stiffness reduction can be controlled to some extent. As far as
the convergence is concerned, the index-based optimization shows better numerical performance
than the one that constrains eigenmodes of interest. In a numerical point of view, fast iteration
algorithm for the viscoelastically damped eigenvalue problems is essential in this approach, and
the approximate solution used for the presented iteration process, under light damping
assumption, is to be expanded in case of moderately damped viscoelastic structures that can be
achieved by using the enhanced damping treatment such as constrained layer damping treatment.
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